钻采工艺 ›› 2021, Vol. 44 ›› Issue (4): 19-22.DOI: 10.3969/J. ISSN.1006-768X.2021.04.05

• 钻井工艺 • 上一篇    下一篇

新疆七中区块克下组油藏地应力场分布特征研究

张其星林伯韬李欢龙于会永何小东宋夏琳   

  1. 1中国石油大学( 北京) 油气资源与探测国家重点实验室 2中国石油长庆油田分公司第九采油厂 3中国石油新疆油田工程技术研究院 4中国石油渤海钻探管具与井控技术服务分公司 
  • 出版日期:2021-07-25 发布日期:2021-07-25
  • 作者简介:张其星(1996-) , 博士,2018 年毕业于中国石油大学(北京) 石油工程专业, 主要从事石油工程储层地质力学相关研究工作。地址: (102249) 北京市昌平区府学路 18 号, 电话:18810556552, E-mail: zqx_cup@ 163. com
  • 基金资助:
    国家自然科学基金“ 高温高应力储层裂缝起裂扩展机理与高效改造方法” (编号: U19B6003-05) ; “ 超深碳酸盐岩断裂体储层酸压裂缝与天然裂缝—溶洞相互作用机理”( 编号:52074311 ) ;“ 含煤系产层组多气合采水力裂缝穿层致裂机理研究”(编:51874328) 和中国石油天然气集团有限公司—中国石油大学(北京) 战略合作科技专项“ 鄂尔多斯盆地致密油—页岩油富集?高效开发理论与关键技术研究” (编号: ZLZX2020-02) 资助。

Study on Distribution Characteristics of In-situ Stresses Fields of the Triassic Lower Formation Reservoir in Qizhong Block, Xinjiang

ZHANG Qixing1 , LIN Botao1 , LI Huanlong2, YU Huiyong3, HE Xiaodong3, SONG Xialin4   

  1. 1 . State Key Laboratory ofPetroleum Resources and Prospecting, China University ofPetroleum( Beijing) , Beijing 102249, China; 2. No. 9 Oil Production Plant ofChangqing Oilfield Branch ofPetroChina, Yulin, Shaanxi 718600, China; 3. Oil Production Technology Research Institute, PetroChina Xinjiang Oilfield CO. , Karamay, Xinjiang 834099, China; 4. Tubing and Well Control Technology Service CO. , BHDC, Tianjin 300280, China
  • Online:2021-07-25 Published:2021-07-25

摘要: 新疆七中区块克下组油藏四周被断裂带切割,中部油藏泥岩隔夹层发育,区域地应力分布复杂,分层压裂实施难度较大。为了明确区域地应力分布,首先建立岩性图版,针对不同岩性地层建立不同的动静态岩石力学参数转换模型,采用现场小型压裂测试和岩心力学实验计算构造应力系数,分析了 151口单井地应力剖面;然后通过测井、分层资料和地震数据开展地层精细划分和三维地质体建模,最终采用克里金插值获取该区域的三维地应力场。分析结果与现场微地震监测和交叉偶极子声波测井数据对比良好。三维地应力场主应力得出克下组油藏大多层位压裂时主要呈现水平缝;层间应力差(0.7~5MPa)和水平应力差(0.4~5MPa)得出油藏垂直裂缝区域较难穿透隔夹层。

关键词: 动静态岩石力学参数, 应力约束, 克里金插值, 三维地应力场, 裂缝走向预测

Abstract:

Triassic lower formation reservoir in Qizhong Area of Xinjiang is cut by fault zones, and there are plenty of stringers composed by mudstones in the reservoir. Therefore, the insitu stresses distribution is complex, and it is difficult to carry out the separate layer fracturing application. To depict the precise insitu stresses field, firstly, a lithological chart is established, and different dynamic and static rock mechanics parameters conversion models are established for different lithologies, and structural stress coefficient is calculated by field mini-hydraulic fracturing tests and core mechanics experiments, the in-situ stress profiles of 151 wells are analyzed. Then, stratigraphic division and the 3dimensional geological body modeling are accomplished by logging, stratigraphic data and seismic data. Finally, indicator kriging interpolation is used to obtain the 3D in-situ stress field. The field micro-seismic monitoring and cross dipole acoustic logging data conform to the calculation results. The main stress of three-dimensional stress field shows that horizontal fractures are mainly present in most layers of Triassic lower formation reservoir during fracturing operations; the vertical fracture area is difficult to penetrate the stringers due to the difference of interlaminar stress (0. 7 ~ 5 MPa) and horizontal stress (0. 4 ~ 5 MPa) .

Key words: dynamic and static rock mechanics parameters, stress constraints, Kriging interpolation, 3-Dimensional in-situ stresses field, fracture orientation prediction